Sains Malaysiana 53(12)(2024): 3409-3423

http://doi.org/10.17576/jsm-2024-5312-22

 

Multi-Robot Path Planning Based on the Improved Nutcracker Optimization Algorithm and the Dynamic Window Approach

(Perancangan Laluan Berbilang Robot Berdasarkan Algoritma Pengoptimuman Nutcracker yang Diperbaiki dan Pendekatan Tetingkap Dinamik)

 

JIANGRONG ZHAO1, HONGWEI DING1,*, YUANJING ZHU2, ZHIJUN YANG1,3,4, PENG HU5 & ZONGSHAN WANG1

 

1School of Information Science and Engineering, Yunnan University, Kunming, China
2College of science and engineering, Dianchi College of Yunnan University, Kunming, China
3Key Laboratory of Educational Informatization for Nationalities, Yunnan Normal University, Kunming, China
4Educalion instruments and Facilities Service Center, Educational Department of Yunnan Province, Kunming, China
5Youbei Technology Co., Ltd, Kunming, China

 

Diserahkan: 6 Ogos 2024/Diterima: 11 Oktober 2024

 

Abstract

Multi-robot path planning faces challenges such as conflict avoidance, collaboration, and dynamic environments. This paper proposes a multi-robot path planning algorithm that integrates the improved nutcracker optimization algorithm with the improved dynamic window approach. To address the nutcracker algorithm’s sensitivity to initial conditions and slow convergence, a population initialization strategy is introduced for more diverse initial populations. Additionally, a simplified path node strategy is also designed to shorten paths and reduce steering times. By incorporating a dynamic inertia weight factor , the balance between global exploration and local optimization is improved. To address the limitations of the dynamic window approach, which is unable to avoid dynamic obstacles instantly and is prone to falling into local optimal solutions, the target distance subfunction, the path evaluation subfunction and the deviation from danger zone subfunction are added to the evaluation function. Finally, the two algorithms were fused together and we conducted four experiments to validate the performance of the MANOA, IDWA, and MANOA-IDWA algorithms, as well as the application of MANOA-IDWA in multi-robot path planning. Results show that MANOA-IDWA significantly increases path planning success rates in dynamic environments, producing shorter and smoother paths, thus enhancing the safety and stability of multi-robot operations.

 

Keywords: Dynamic window approach; fusion algorithm; multi-robot path planning; nutcracker optimization algorithm

 

Abstrak

Perancangan laluan berbilang robot menghadapi cabaran seperti mengelakkan konflik, kolaborasi dan persekitaran dinamik. Kertas ini mencadangkan algoritma perancangan laluan berbilang robot yang mengintegrasikan algoritma pengoptimuman nutcraker yang dipertingkatkan dengan pendekatan tetingkap dinamik yang dipertingkatkan. Untuk menangani kepekaan algoritma nutcracker kepada keadaan awal dan penumpuan perlahan, strategi pemula populasi diperkenalkan untuk populasi awal yang lebih pelbagai. Selain itu, strategi nod laluan yang dipermudahkan juga direka bentuk untuk memendekkan laluan dan mengurangkan masa stereng. Dengan menggabungkan faktor berat inersia dinamik , keseimbangan antara penerokaan global dan pengoptimuman tempatan dipertingkatkan. Untuk menangani batasan pendekatan tetingkap dinamik yang tidak dapat mengelakkan halangan dinamik serta-merta dan terdedah kepada penyelesaian optimum tempatan, subfungsi jarak sasaran, subfungsi penilaian laluan dan sisihan daripada subfungsi zon bahaya ditambahkan pada fungsi penilaian. Akhirnya, kedua-dua algoritma telah digabungkan bersama dan kami menjalankan empat uji kaji untuk mengesahkan prestasi algoritma MANOA, IDWA dan MANOA-IDWA serta aplikasi MANOA-IDWA dalam perancangan laluan berbilang robot. Keputusan menunjukkan bahawa MANOA-IDWA dengan ketara meningkatkan kadar kejayaan perancangan laluan dalam persekitaran dinamik, menghasilkan laluan yang lebih pendek dan lancar, sekali gus meningkatkan keselamatan dan kestabilan operasi berbilang robot.

 

Kata kunci: Algoritma gabungan; algoritma pengoptimuman nutcracker; pendekatan tetingkap dinamik; perancangan laluan berbilang robot

 

RUJUKAN

Abdel-Basset, M., Mohamed, R., Jameel, M. & Abouhawwash, M. 2023. Nutcracker optimizer: A novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems. Knowledge-Based Systems 262: 110248.

Andreychuk, A. & Yakovlev, K. 2018. Two techniques that enhance the performance of multi-robot prioritized path planning. Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’ 18). doi:10.48550/arXiv.1805.01270

Chen, H.L., Xu, Y.T., Wang, M.J. & Zhao, X.H. 2019. A balanced whale optimization algorithm for constrained engineering design problems. Applied Mathematical Modelling 71: 45-59.

Ge, S.S. & Cui, Y.J. 2002. Dynamic motion planning for mobile robots using potential field method. Autonomous Robots 13(3): 207-222.

Gerkey, B. & Mataric, M. 2003. A formal framework for the study of task allocation in multi-robot systems. International Journal of Robotic Research 23(9): 939-954.

Han, S., Wang, L., Wang, Y.T. & He, H.C. 2022. A dynamically hybrid path planning for unmanned surface vehicles based on non-uniform Theta* and improved dynamic windows approach. Ocean Engineering 257: 111655.

Huang, X.Q., Cao, Q.X. & Zhu, X.X. 2019. Mixed path planning for multi-robots in structured hospital environment. Journal of Engineering 2019(14): 512-516.

Ida Evangeline, S., Darwin, S., Peter Anandkumar, P. & Sreenivasan, V.S. 2024. Investigating the performance of a surrogate-assisted nutcracker optimization algorithm on multi-objective optimization problems. Expert Systems with Applications 245: 123044.

Jian, Z.Q., Zhang, S.Y., Chen, S.T., Nan, Z.X. & Zheng, N.N. 2021. A global-local coupling two-stage path planning method for mobile robots. IEEE Robotics and Automation Letters 6(3): 5349-5356.

Kanoon, Z., Al-Araji, A. & Abdullah, M. 2022. Enhancement of cell decomposition path-planning algorithm for autonomous mobile robot based on an intelligent hybrid optimization method. International Journal of Intelligent Engineering and Systems 15(3): 161-175.

Karaman, S. & Frazzoli, E. 2011. Sampling-based algorithms for optimal motion planning. International Journal of Robotic Research 30(7): 846-894.

Kennedy, J. & Eberhart, R. 1995. Particle swarm optimization. IEEE International Conference on Neural Networks Proceedings doi: 10.1109/icnn.1995.488968

Lin, S.W., Liu, A., Wang, J.G. & Kong, X.Y. 2022. A review of path-planning approaches for multiple mobile robots. Machines 10(9): 773.

Liu, G.Y., Shu, C., Liang, Z.W., Peng, B.H. & Cheng, L.F. 2021. A modified sparrow search algorithm with application in 3D route planning for UAV. Sensors 21(4): 1224.

Madridano, A., Al-Kaff, A., Martín, D. & de la Escalera, A. 2021. Trajectory planning for multi-robot systems: Methods and applications. Expert Systems with Applications 173: 114660.

Matoui, F., Boussaid, B., Metoui, B. & Abdelkrim, M.N. 2020. Contribution to the path planning of a multi-robot system: Centralized architecture. Intelligent Service Robotics 13(1): 147-158.

Nunes, E., McIntire, M. & Gini, M. 2017. Decentralized multi-robot allocation of tasks with temporal and precedence constraints. Advanced Robotics 31(22): 1193-1207.

Wang, H., Wang, W., Zhou, X., Sun, H., Zhao, J., Yu, X. & Cui, Z. 2016. Firefly algorithm with neighborhood attraction. Information Sciences 382: 374-387.

Xue, J.K. & Shen, B. 2020. A novel swarm intelligence optimization approach: Sparrow search algorithm. Systems Science & Control Engineering 8(1): 22-34.

Yang, L.W., Fu, L.X., Li, P., Mao, J.L. & Guo, N. 2022. An effective dynamic path planning approach for mobile robots based on ant colony fusion dynamic windows. Machines 10(1): 50.

Yang, X.S. 2009. Firefly algorithms for multimodal optimization. In Stochastic Algorithms: Foundations and Application. SAGA 2009. Lecture notes in computer science, vol 5792, edited by Watanabe, O. & Zeugmann, T. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-04944-6_14

Yu, G., Wang, H., Zhou, H.Z., Zhao, S.S. & Wang, Y. 2021. An efficient firefly algorithm based on modified search strategy and neighborhood attraction. International Journal of Intelligent Systems 36(8): 4346-4363.

 

*Pengarang untuk surat-menyurat; email: zth1320359@163.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya